MARC FORNES & THEVERYMANY™

PRACTICING AT THE INTERSECTION OF ART + ARCHITECTURE ^ COMPUTATION

070131_Unroll Surfaces


Non-nested pattern (with obvious overlaps) of unrolled surfaces
(“le champ” project display panels)

Rhinoscript “Tips’n trick” :
Call Rhino.Command (CStr(“_UnrollSrf Explode=No Labels=No _Enter”), vbFalse)

DEVELOPABLE SURFACES : (ie wikipedia.org)
In mathematics, a developable surface is a surface with zero Gaussian curvature. That is, it is surface that can be flattened onto a plane without distortion (i.e. stretching, compressing, tearing). Inversely, it is a surface that can be made by transforming a plane (i.e. folding, bending, rolling, cutting, and gluing).

The developable surfaces that can be realized in 3D space are:

cylinders and, more generally, the generalized cylinder: the cross-section can be any smooth curve
cones and, more generally, conical surfaces, away from the apex
(trivially:) planes, which can be viewed as a cylinder whose cross-section is a line
Spheres are not developable surfaces under any metric as they cannot be unrolled into a plane. The torus has a metric under which it is developable, but such a torus does not embed into 3D space. It can be realized in four dimensions.

Formally, in mathematics, a developable surface is a surface with zero Gaussian curvature. One consequence of this is that all developable surfaces embedded in 3D space are ruled surfaces (though hyperboloids are examples of ruled surfaces that are not developable). Because of this, many developable surfaces can be visualised as the surface formed by moving a straight line in space. For example, a cone is formed by keeping one end of a line fixed while moving the other end in a circle.

SYNCLASTIC (ie mathworld.com)
A surface on which the Gaussian curvature is everywhere positive. When is everywhere negative, a surface is called anticlastic. A point at which the Gaussian curvature is positive is called an elliptic point.

Advertisements

No comments yet»

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s